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8.1 SELECTION AND TRANSFORMATIONS
OF EXPLANATORY VARIABLES

Defining the mode of action to be modeled is the first step in QSAR generation
(McKinney et al. 2000). Chapter 1 covers broadly the various modes of action. The
class of relevant toxicants and candidate explanatory variables (descriptors) are iden-
tified once the mode of action is defined. Previous chapters describe the potential
explanatory variables for metal ions. The final step in QSAR development is the gen-
eration of quantitative means for selecting and relating the explanatory variable(s) to
the effect of interest. The purpose of this chapter is to provide essential details about
this last step.

What are the issues that require consideration while generating a tool to relate
metal ion qualities and bioactivity? First, a method must be selected for determin-
ing which, and perhaps how many, explanatory variables to use. Second, the best
approach must be applied to fit the most appropriate model to these data. What
is best will depend on the intended use of the model and the data set qualities.
Third, some validation method is applied that specifies how useful the result-
ing model is relative to the intended predictions of bioactivity for a metal ion
not used to generate the model. Again, usefulness will depend on the intended
application of resulting predictions. Finally, unique issues must be addressed for
building predictive models for metal ion mixtures. The objective of this chapter
is to explore these four activities: selecting the best explanatory variables, fitting
the appropriate model, assessing predictive value of a model, and modeling metal
ion mixtures.

8.2 SELECTION AND ADJUSTMENT OF INDEPENDENT VARIABLES

How does one determine which and how many explanatory variables to include in a
model? There is no substitute for a sound understanding of the subject: the statisti-
cal methods described below should augment, not supplant, a sound understanding
of the chemical, physical, and biological processes that translate metal exposure {0
bioactivity. How many candidate explanatory variables to consider might depend
on the group of cations for which predictions are being made. A few candidate
models with a single explanatory variable each might be the focus for some sets
of metal ions, such as a group of divalent class (b) and intermediate metal ions.
Models incorporating more than one explanatory variable might be thoughtfully
explored for more diverse sets, such as ones composed of class (a), intermediate,
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and class (b) metal ions with differing charges. Several metal-ligand binding trends
might be anticipated to influence metal ion bioactivity for such a heterogeneous set
of cations.

8.3 QUANTITATIVE ION CHARACTERISTIC-ACTIVITY
RELATIONSHIP (QICAR) MODELS

8.3.1 INTERMETAL fON TRENDS

Models predicting bioactivity of single metal ions based on binding characteristics can
be generated for particular subsets of metals of interest or for metal ions in general. No
general rules are needed if intent alone determines the subset, that is, relative toxicity
of trivalent lanthanides used by the computer display industry. Wolterbeck and Verburg
(2001) recommend a periodic table corner calibration of elements if the intent is to
produce a more general metal model for a particular effect to a particular biological
entity. A series of metals with minimum and maximum values for relevant properties
are selected from the periodic table “corners.” For example, they select boron, cesium,
germanium, lithium, selenium, and uranium for general model calibration. This theme
of selecting metals ranging along relevant binding axes is also the natural choice for
more narrowly focused studies such as that of the lanthanides just mentioned. In so
doing, the distribution of metal ions along the final scale(s) used for the explanatory
variable(s) should be as uniform as reasonable to facilitate later regression fitting.

Selecting the most useful model from among a group of candidates is not as
simple as fitting a regression and picking the model with the highest coefficient of
determination (r2) value,

= bZZ,;(Xi _2)2
2=

where, for a simple model with one explanatory variable, b = slope, X; and Y, = the
i X and Y of n data pairs, and X and Y are averages of the X and Y observations.
The coefficient of determination increases as additional explanatory parameters are
added to a model, so it will not provide directly useful insight for identifying the
model whose parameters contain the most information for making predictions per
estimated explanatory variable.

One general scheme for assessing model adequacy and then selecting from
among candidate models is provided here. The model adequacy assessment has
three initial components: application of subject knowledge to identify candidate
models, conventional regression methods, and residual analysis. Additional crucial
components involved with gauging predictive adequacy will be discussed later.
Approaches to selecting the best model from among candidates can take several
forms, including the Minimum Akaike Information Criterion Estimation (MAICE)
and Mallows’s C, approaches. Each of these approaches will be described and
illustrated. During discussions, it is important that the statistical details not distract
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the reader from the central theme that subject knowledge should be the touchstone
for decisions at all steps.

Modeling begins by satisfying the basic conditions for regression analysis. It is
assumed at the onset that the explanatory variable values are independent of each
other. Also, Type I regression techniques formally require no error in the explanatory
variable(s), although this requirement is relaxed often to the general premise that the
explanatory variable has an immaterial amount of error relative to that of the response
variable. Another approach, such as functional regression, might be required if this
premise was unjustified. Next, the regression residuals (the difference between the
observed response variable value and its predicted value) are assumed to be normally
distributed. Finally, the sample variance around the regression line is assumed to be
independent of the magnitude of the explanatory variable(s), that is, homoscedasticity is
assumed. The last two requirements can be satisfied in some cases by transforming one
or more of the variables prior to regression fitting. A common instance in this chapter
is the logarithmic transformation of the response variable, such as the log of ECs,. This
transformation can resolve nonnormality of residuals and heteroscedasticity issues
while also conforming to the general toxicological paradigm that response is more often
related linearly to the logarithm of dose than to the arithmetic dose (Finney 1942, 1947).

A combination of univariate statistics and plots allow exploration of a candidate
model relative to these last two requirements. Bacterial bioluminescence 15-minute
EC;, data for 20 metal ions (McCloskey et al. 1996, Appendix 8.1) and the recently
developed softness index (Kinraide 2009) can be applied to illustrate this approach.
The following statistical analysis system (SAS) code implements analyses with nor-
mality plots and tests of regression residuals (Figure 8.1 top). It also plots predicted
and observed data (Figure 8.1 middle) and regression residuals versus the explana-
tory variable, G,,, (Figure 8.1 bottom).

PROC GLM;
MODEL TOTLEC = SOFTCON;
OUTPUT OUT = LINEAR2 PREDICTED = PRED2 RESIDUAL = RES2;

RUN;
PROC UNIVARIATE NORMAL PLOT;
VAR RES2;
RUN;
SYMBOL1 V = dot COLOR = black; SYMBOL2 V = star COLOR = black;
SYMBOL3 V = dot COLOR = black;
PROC GPLOT;
PLOT TOTLEC*SOFTCON PRED2*SOFTCON/OVERLAY HAXIS = -1.5 to
1.5 by 0.5;

PLOT RES2*SOFTCON/VREF = 0 HAXIS = -1.5 to 1.5 by 0.5;
RUN;

The middle plot in Figure 8.1 shows the values predicted (asterisks) with the model
shown in the upper right corner and the original observations (solid dots). The obser-
vations are distributed uniformly along the axis of the explanatory variable with
no obvious gaps. This minimizes the chance of a few extreme observations having
more influence on the model fitting than others. The coefficient of determination, 1?,
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Test --Statistic-- v p Value------

Shapiro-WilK W 0953728 Pr<W 0.4272
Kolmogorov-Smirnov D 0.097586 Pe>D >0.1500
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FIGURE 8.1 Bacterial bioluminescence inhibition 15-minute EC,
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data for 20 metal ions

(McCloskey et al. 1996) modeled with Kinraide’s softness index (Kinraide 2009). The SAS
code listed in Appendix 8.1 produced the normality plots and tests for the regression residuals
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of 0.87 indicates that the model accounts for approximately 87% of the variation in
the response variable, with only 13% of the variability remaining unexplained. The
residuals appear to be randomly distributed around the predicted values (bottom
panel). The residuals show no pattern if plotted against the explanatory variable with
a reference line indicating the state of perfect prediction at any point (residual = 0).
There was a random distribution of residuals with no obvious trends left unexplained
by the model along the range of values for the explanatory variable. This will be
explored more closely later. Further, there was no trend in the amount of variation
in the residuals along the abscissa, providing no reason to doubt the assumption of
homoscedasticity. In a normal probability plot (top of Figure 8.1) with the distri-
bution of points expected for a normal distribution (asterisks) and positions of the
residuals (+ signs), the residuals conform to the assumed normal distribution. Four
tests for normality of the regression residuals also provide no evidence of deviation
from this assumption (top right of Figure 8.1).

The next task required in QSAR development is selection of the best model.
Several approaches are used and range from statistically uninformed judgment of
the researcher, MAICE, and Mallows’s C, method. Model selection guided solely
by the researcher’s informal judgment can produce the best model, but consistency
of good judgment is enhanced by application of more formal methods. For example,
model selection from among candidate models based only on the smallest * value
will not always produce the best model,

o (v -%)
X = 2—‘1;—‘ . 8.2)
i=1 !

Use of coefficients of determination or % values for two models of similar complex-
ity might be adequate if combined with subject knowledge and the residual plots just
described. As an example, such use would be appropriate if the above SAS code fitting
the [In ECyy;, G,,,] data were also modified to assess the alternative model generated
with the more conventional softness index, o, The r* for G,,, was 0.87 and that for o,
was 0.81, lending support to Kinraide’s (2009) argument that G,,, will perform better
than the conventional 6, during model generation. But the model with the most infor-
mation per fitted explanatory variable cannot be identified with these otherwise useful
goodness-of-fit statistics. The #2 will increase with each addition of an explanatory
variable, but the incremental improvement in fit might carry the cost of increased vari-
ance in parameter estimates (Hocking 1976). A straightforward change can be made to
Equation (8.1) to generate an adjusted 2 that incorporates the number of explanatory
parameters and model degrees of freedom (Hocking 1976; Walker et al. 2003),

(n—l)(l—rz)

n—p

(8.3)

2 —
¥ Adjusted = 1-

where n = the number of observations, r2=coefficient of determination, and p=the
number of estimated parameters.
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Alternatively, criteria can be estimated for each model based on the principle
of parsimony, that is, all else being equal, select the simplest model. The Akaike
Information Criterion (AIC) is one of the most widely used information criterion
that combines the model error sum of squares and the number of parameters in the
model,

AIC=nIn +2p 8.4

The MAICE approach involves computing AIC values for each candidate model
and then selecting the model with the lowest AIC value. The model with the lowest
AIC value contains the most information per estimated parameter. Similar criteria,
such as the Sawa or Schwarz Bayesian information criteria, can also be applied.

Another similar approach is described by Mallows (1973, 1995), Hocking (1976),
Burman (1996), Der and Everitt (2006), and numerous others. Mallows’s C, statistic
is estimated as the following,

+2p—n 8.5)

where 52 = the residual (error) mean square for the model including all available
explanatory variables and an intercept. According to Hocking (1976, p. 18), “Cp is
an estimate of the standardized total mean squared error of estimation for the cur-
rent data, X.” A set of explanatory variables are selected for possible inclusion and
models built with increasing numbers of these variables incorporated. Mallows’s Cp
statistics are computed for the 2p — 1 possible models and tabulated beginning with
models with the highest 12 and ending with those with the lowest 12, The best or most
parsimonious one, two, three, and more variable models are identified as those with
the lowest Cp statistics. Commonly, Mallows’s Cp statistics for all 2p — 1 models
are plotted against the number of estimated parameters in each model. The line for
Cp = p is included in this plot because Cp values close to this line are those of the
most parsimonious models.

The following SAS code implements AIC and Mallows’s C, statistic-based
model selection for the bacterial bioluminescence inhibition by 20 metal ions
(Appendix 8.1) using 6 candidate explanatory variables. The explanatory variables as
defined in Newman et al. (1998) are the following: SOFTCON (Kinraide’s G,,, soft-
ness index), ION (ionic index or the square of the ion charge divided by the Pauling
ionic radius, Z*r), COVAL (covalence index, %, the square of the electronegativity
times the radius), HYD (llog Kyl where Ky is the first hydrolysis constant of the
metal ion), DELE (AE,, the difference in electrochemical potential of the ion and
its first stable reduced state), and ANIP (atomic number divided by AIP, the differ-
ence in ionization potentials for the ion oxidation numbers OX and OX — 1). Both
of the PROC GLMSELECT procedures in the SAS code use forward model selec-
tion, that is, they begin with a model only fitting an intercept and then progressively
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add explanatory variables that most improve the model. Selection in this example
is based on the AIC (CHOOSE = AIC) and C, (SELECT = CP), although simply
replacing these specifications at the end of the MODEL line with SELECTION =
FORWARD(SELECT = ADJRSQ STOP = SL SLE = 0.2) would permit selection
based on an 24,4 instead.

PROC GLMSELECT;
MODEL TOTLEC = SOFTCON ION COVAL HYD DELE ANIP/SELECTION

FORWARD (SELECT = SL CHOOSE = AIC SLE = 0.2);
RUN;
PROC GLMSELECT;
MODEL TOTLEC = SOFTCON ION COVAL HYD DELE ANIP/SELECTION

FORWARD (SELECT = CP);
RUN;
PROC REG;
MODEL TOTLEC = SOFTCON ION COVAL HYD DELE ANIP/SELECTION = CP;

PLOT CP.*NP./CMALLOWS = BLACK;
RUN; ’

The first PROC GLMSELECT in the code uses the AIC statistic to select the combi-
nations of these six variables that produce the most parsimonious model. The model
with the lowest AIC was that combining the softness, covalence, and ionic indices
as shown in the inset table of Figure 8.2. Adding any of the other variables to the

140
120 4t +
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& 80
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40 '“+ + ‘C/p:: P
20 1+ %
0 Brs 4L i ? t
T T ¥ T T T T T ¥ T T
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
P (intercept + ...)
Model AIC Cp
Intercept 53.1
plus o;on 14.9 4.4
plus Xt 13.1 2.9
plus Z/r 113 19

FIGURE 8.2 Results from the SAS code that implements AIC and Mallows’s C, statistic-
based model selection for the bacterial bioluminescence inhibition by 20 metal ions using 6
candidate explanatory variables (see text for details). The model with the lowest AIC was that
including the softness, covalence, and ionic indices (inset table). Application of Mallows’s C,
statistic also results in selection of the model containing the softness, covalence, and ionic

indices.
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models did not reduce the AIC any lower than 11.3. Note, however, that the selection
used here involved significance levels for variables (SELECT = SL) and an associ-
ated p-value<0.2 was required (SLE = 0.2) for an explanatory variable to be consid-
ered in a model. The second PROC GLMSELECT in the code does the same except
it selects models based on Mallows’s C, statistic. Again, the model containing the
softness, covalence, and ionic indices was selected. This final model had an r2 of 0.91
and 12, geq of 0.89.

The PROC REG that specifies forward variable selection with the C, statistic pro-
duces a C,, versus p plot (Figure 8.2), and generates a table of models and associated
r> and C, values. The best 1, 2, and 3 explanatory variable models are highlighted in
Table 8.1. Note that similar 2,4,,.,-p plots could also have been produced but break
points for C,-p plots tend to be clearer than for % giusiea-P Plots (Hocking 1976).

8.3.1.1 Nonmonotonic Models

It is important to mention at this point in discussions that, based on subject knowl-
edge, some metal ion data sets should not be expected to conform to a monotonic
trend. Model development should involve attention to such exceptions. The devia-
tion of K* in the metal-valinomycin stability constant versus AN(AIP)-! relationship
discussed in Chapter 1 (Figure 1.2) is one important example. A similar example
involves acute Ba* toxicity to the nematode, Caenorhabditis elegans (Tatara
et al. 1998). This divalent cation is much more toxic than predicted by the gen-
eral model constructed with 18 mono-, di- and trivalent cations. This could have
been anticipated based on an understanding of its interference with K* channels
and Na*/K*-ATPase. The Ba?* has a radius very similar to K* but a much higher
Z?r', Tts bonds with K* channel ligand sites are much more stable than those of
the K*. It outcompetes K* for binding at the K*-channels, resulting in blockage
of K* channels in excitable tissues.

8.3.1.2 Cross-Validation

The procedures described to this point have not assessed model usefulness for pre-
diction. Several approaches allow estimation of predictive usefulness with differing
degrees of effectiveness. The most prominent approaches will be described: valida-
tion, statistical rules of thumb, and two cross-validations approaches.

The best approach, validation, generates a completely new data set and uses the
model generated with the earlier data set to make predictions for these new data.
The model is validated if new predictions are close to their corresponding observed
bioactivities. Another approach might involve using the new data set to estimate new
model parameters and subsequent comparison of those estimates to those generated
earlier by fitting the first data set. Comparable estimates suggest good prediction for
the first model. Understandably, all data are often pooled into a larger data set after
successful validation to generate a final model.

Other approaches can generate acceptable estimates of usefulness if the above
approach is not feasible. At the other extreme from the above validation approach
is application of a statistical rule of thumb such as the Y criterion estimated from
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TABLE 8.1
Results of Mallows’s Cp Analysis

Number of Parameters C(p)

1.9423
23011
2.4306
2.9164
3.0258
3.3478
3.3727
3.6318
3.7654
3.7978
39168
43910
44219
4.7552
4.8865
49336
5.0081
5.0134
5.3152
5.3324
5.3882
54163
5.5826
5.6538
6.0443
6.0851
6.1357
6.3207
6.8304
6.8336
6.8852
6.9399
6.9701
7.0000
7.4085

2
0.9083
0.9060
0.9051
0.8888
0.9143
0.8859
0.9121
0.9104
0.8963
0.9093
0.9085
0.9054
0.8657
0.8898
0.8758
0.8886
0.9145
0.9144
0.8861
0.9123
0.8988
0.8723
0.9107
0.8971
0.8813
0.8811
0.8939
0.8664
0.8893
0.8761
0.8758
0.8886
0.9016
09145
0.8724

Variables in Model (plus an Intercept)

SOFTCON ION COVAL
SOFTCON COVAL HYD

SOFTCON COVAL DELE
SOFTCON COVAL

SOFTCON COVAL HYD DELE
SOFTCON DELE

SOFTCON ION COVAL DELE
SOFTCON ION COVAL ANIP
SOFTCON COVAL ANIP

SOFTCON COVAL HYD ANIP
SOFTCON ION COVAL HYD
SOFTCON COVAL DELE ANIP
SOFTCON

SOFTCON HYD DELE

SOFTCON HYD

SOFTCON DELE ANIP

SOFTCON ION COVAL HYD DELE
SOFTCON COVAL HYD DELE ANIP
SOFTCON ION DELE

SOFTCON ION COVAL DELE ANIP
SOFTCON ION HYD DELE
SOFTCON ION

SOFTCON ION COVAL HYD ANIP
ION COVAL HYD DELE

ION HYD DELE

COVAL HYD DELE

SOFTCON HYD DELE ANIP
SOFTCON ANIP

SOFTCON ION DELE ANIP
SOFTCON ION HYD

SOFTCON HYD ANIP

ION HYD DELE ANIP

SOFTCON ION HYD DELE ANIP
SOFTCON ION COVAL HYD DELE ANIP
SOFTCON ION ANIP

Note: Only the first 35 models of 201 or 63 possible models with 6 parameters (P) are tabulated.
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F statistics (Draper and Smith 1988). The computed statistic is compared to some
arbitrary threshold for model predictive usefulness. Alone, a statistically significant
F statistic estimated for a regression model parameter provides only limited insight
about how useful any predictions from a model might be; however, some F statistic
value greater by a preestablished magnitude from an Rt ar095) has served as a tool
for separating useful from nonuseful models. The general rule of thumb, (F statistic)/
(F(dfm,dfho_%))z 4 to 5 is often applied for this purpose as detailed in Draper and
Smith (1988)." For example, the estimated F statistic for the above model predicting
bacterial bioluminescence inhibition based on the metal ions’ softness (O,0n), i0niC,
and covalence indices was 52.83 and had an associated critical F3.16,095 0f 3.24. The
resulting (F statistic)/(F i5,005)) = 52.83/3.24 = 16.31 is much greater than 5, suggest-
ing that the model would be a useful one for prediction.

Two cross-validation methods provide a better approach than that just described
but generally not as good as the validation method. The first involves splitting of the
available data into two subsets and the second involves removal of one datum at a
time from the data set prior to building models.

If large enough, a data set can be split into two subsets called the training and val-
idation sets. This procedure simulates the validation technique by producing a data
set not used to build the original model. The disadvantage of this approach is that
all available data are not used to generate the model. As a general rule, the number
of observations should be at least 6 to 10 times more than the number of explanatory
variables in order to successfully apply this approach (Neter et al. 1990). Individual
observations can be randomly split between the training and validation sets, but in
some cases, a completely random assignment might not be the best approach. For
example, it might be preferable to randomly pick observations from within regions
along a gradient for some explanatory variable. This ensures that both the train-
ing and validation data sets will have observations representing all relevant regions
along the gradient.

If the data set () is small, one observation can be removed at a time from the
data set to produce a data set of size n~1, a model is generated with the n—1
observations, predictions made with the model for that one removed observation,
and the difference between the observed value and predicted value calculated. The
removed datum is then placed back into the data set and another datum removed
and the above process repeated. This process is repeated for a data set to build
n models. Each model has a different observation missing for which predictions
are done. Analysis of the n differences between the observed and predicted val-
ues (prediction residuals) suggests how useful predictions will be from a model.
Prediction residuals can be examined directly or some summary statistic might be
generated from the prediction residuals. The following SAS code generates indi-
vidual prediction residuals and also produces a summary statistic for the bacterial
bioluminescence data set listed in Appendix 8.1. Figure 8.3 suggests good predic-

tion (top panel) and no apparent trend in prediction residuals with predicted In of
the ECy, (bottom panel).

* The df,, = model degrees of freedom or the number of estimated parameters minus 1, df, = the residu-
als degrees of freedom, and 0.95 = 1-q.
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FIGURE 8.3 Good prediction is suggested in this plot of observed Ln (ECy) versus the
Ln (ECs,) predicted for each point that was omitted from the model (top panel). No trends in
prediction quality over the range of predictions were evident in the bottom panel of prediction
residuals versus the predicted In of the ECy,.

PROC REG PRESS OUTEST = PSOFT;
MODEL TOTLEC = SOFTCON/AIC BIC;
OUTPUT OUT = LINEAR PREDICTED = PRED RESIDUAL = RES PRESS =
PRES;
RUN;
PROC PRINT;
VAR TOTLEC PRED RES PRES;
RUN;
PROC PRINT DATA = PSOFT;
RUN;

The OUTPUT statement specifies that each prediction residual (PRESS = PRES)
be listed in the output. The PROC REG specifies that the following prediction resid-
ual sum of squares statistic also be generated,

PRESS = (v~ 910", 8.6)

i=1
This PRESS statistic and the model total sum of squares (SSy) can be combined to
produce a statistic similar to the coefficient of determination (Equation [8.1]) except
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now the variation in expected predictions is quantified for a model that was built
without the observation of interest.

PRESS

S8y &7

2 —
Yorediction = 1-

Continuing with the bacterial bioluminescence inhibition example, the model
including the softness, covalence, and ionic indices had a PRESS of 14.260 and asSs;
of 85.567. The 12, jicrion 18 1 — (14.269/85.567) or 0.83. This is slightly lower than the
r2(0.91) or even the r2,,..,,(0.89) that were estimated earlier. Given the ions used to
build the model are a representative sample of ions being modeled, the 12 prediction DESE
reflects the amount of variation to be expected in bioactivity predictions for a metal

ion not used to build the QICAR model.

8.3.1.3 Metal Interactions

Discussions to this point have focused on predicting bioactivity of a single metal ion
in isolation from others; yet, metal ions are often present as mixtures. Models appli-
cable to metal mixtures were described in Chapter 1 (Section 1.3.3) and included
those based on the assumptions of either joint independent (Equations [1.3] and [1.4])
or joint similar (Equations [1.6] to [1.9]) action.

The joint similar action model is based on the assumption that probit models
(bioactivity versus concentration) for a set of metal ions sharing the same mode of
action (and toxicokinetics) will have a common slope (Equations [1.6] and [1.7]).
So one simple metric gauging conformity to or deviation from the assumption of
joint similar action is the absolute difference in the estimated slopes for two metal
ions. To produce Figure 8.1 (bottom panel), maximum likelihood fitting of single
metal ion concentration versus proportional inhibition of bacterial bioluminescence
to a probit model was done using the SAS package procedure, PROC PROBIT,
(Examples of such an application of PROC PROBIT are given for the combined
influence of La* and Ce** concentration on bacterial bioluminescence in Appendix
8.2.) This was done for each metal separately and the absolute value of the difference
in model slopes used to produce the figure. Note that a full factorial experimental
design involving a matrix of two metal mixtures is not required. However, as the fig-
ure should also make clear, the more involved experimental design required for the
approach based on independent action produced clearer metal interaction QICARs
in this case.

An estimated interaction coefficient, p, was used in Chapter 1 to quantify poten-
tial interactions in binary mixtures of metal ions based on the independent joint
action model (Figure 1.8, top panel). The associated data set was generated with a
matrix of binary metal mixtures. The SAS code in Appendix 8.2 shows an example
La’* and Ce** data set with five La®* concentrations (including 0) combined with
five Ce** concentrations (including 0). The top row of data includes those for differ-
ent concentrations of Ce** and no added La®*. The leftmost column of data includes
those for different concentrations of La3* and no added Ce3*. All other data reflect
mixtures of the two metal ions at different concentrations. The first row and column
of data can be used to generate the probit models for the bioactivity of each metal
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alone and then the slopes of the two models to be compared as described above
under the assumption of similar mode of action. The confidence intervals for slopes
of the La3*(2.50 with a 95% confidence interval of 1.26 to 3.73) and Ce** (3.08 with
a 95% confidence interval of 2.23 to 3.94) models suggest no obvious deviation from
the assumption of similar action. All of the other data could be used to estimate the
interaction coefficient p, under the assumption of independent action of the paired
metal ions. The resulting interaction coefficient estimate of 1.50 (95% confidence
interval: 0.91 to 2.10) provides little evidence for or against this assumption. (The
interaction coefficient would be 1 if the metal ions had completely independent
action.) Fortunately, the evidence was much clearer in the data sets used to generate
Figure 1.8.

8.4 CONCLUSION

The general steps of QSAR production were described at the beginning of this chap-
ter: (1) define the mode of action, (2) define the relevant toxicants sharing that mode
of action, (3) define the variables with the most potential for quantifying differences
among toxicants, and (4) generate a tool for selecting and relating the explanatory
variable(s) to the effect of interest. Most attention was given in this chapter to the
last step, although relevant aspects of the other steps were discussed. Approaches to
selecting metal ions were identified, including spreading choices along the ranges of
candidate explanatory variables, and in the case of a general metal ion QICAR, the
periodic table corner calibration method. The coefficient of determination combined
with regression residual plots was described as a useful but insufficient means of
selecting the best model for making predictions. For candidate models with differ-
ing numbers of explanatory variables, MAICE and Mallows’s C, approaches were
advocated for picking the model with the most information for making predictions
per estimated parameter. Several techniques were described for quantifying how
good predictions will be for metal ions not included during model fitting, including
the v, criterion based on F statistics, model validation with a completely new data
set, and cross-validation. The ¥, criterion based on F statistics is useful but involves
an arbitrary threshold. Model validation with a completely new data set is ideal but
might require more resources than are available to the researcher. Cross-validation
involving splitting of a data set into training and validation data subsets simulates
validation with new data but requires a relatively large data set. Often, the potential
influence of the resulting data set sizes on model generation is assessed by conduct-
ing cross-validation twice. Data subset A is the training data and subset B the valida-
tion data during the first cross-validation, and then subset A becomes the validation
data and subset B becomes the training data during a second cross-validation. How
similar the results are for the two cross-validations suggests the influence of data
splitting on the cross-validation process. The final cross-validation approach can be
applied with smaller data sets. A set of n models are generated by omitting one
observation from each model and then comparing predicted values for the omitted
observation to the observed values for the observation. Prediction residuals or sum-
mary statistics are then generated. Summary statistics might include the PRESS
(prediction sum of squares) or 1%, gicrion-
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In addition to the methods described above, those useful for quantifying metal
ion mixture bioactivitics were also discussed. The general models described in
Chapter 1 are implemented with specific computer code to illustrate the two poten-
tial approaches. The first is based on similar Joint action, assumes identical slopes for
similar acting metal ions, and measures deviations from identical slopes in order to
quantify departure from the assumption of similar action. This involves only probit
models for the individual metal ions alone. The second approach, which is based on
joint independent action, requires an experimental design in which different con-
centrations of each metal ion are in mixture with those of the second metal ion. An

interaction coefficient, P, quantifies deviations from the assumption of independent
action,
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APPENDIX 8.1:

SAS BACTERIAL BIOLUMINESCENCE
EC,, QICAR DATA SET

This code models ion characteristics against all metals
from Microtox toxicity data ~ Ba included - McCloskey
et al. 1996 COVAL is covalence index which reflects the
tendency to form covalent bonds with soft ligands such
as sulfur. It is the eletronegativity squared times the
radius. ION is % squared/radius. It is the polarizing
power or the energy of the metal ion during
electrostatic interaction with a ligand, SOFT is sigma
sub p or the softness index. It reflects the tendency
for the outer electron shell to deform (polarizability)
and the ion’s tendency to share electrons with ligands.
ANIP reflects the ionization potential (IP) and inertia
or size (AN). LGANZIP is the log of ANIP that

Kaiser (1980) preferred to ANIP. DELE this the absolute
difference between the electrochemical potential of the
ion and its first stable reduced state which is a
measure of the ion’s ability to change electronic state.
HYD is the absolute value of the log of the first
hydrolysis constant which reflects the ion’s affinity
to intermediate ligands such as oxygen donor atoms. The
TOTLEC is the log (base 10) of the EC50 at 15 minutes
exposure and expressed as total dissolved metal, not the
free ion. This also includes Hg for which the chloride
species are not considered. Note that SOFTCON was added
as a potentially better softness index. It is the
computed softness index Sigma Con Comp from

Kinraide 2009 Env. Tox. Chem. 28:525-533, Table 2.

OPTIONS PS = 58;
DATA REVIEW;

INPUT METAL $ COVAL ION SOFT ANIP LGANIP DELE HYD TOTLEC

SOFTCON @@;

CARDS;
HGi+ 4.08 3.92 0.065 9.62 0.983 0.91 3.40 -0.037
CA2+ 1.00 4.00 0.181 3.47 0.540 2.76 12.7 4,976 -~
cp2+ 2.71 4.21 0.081 6.07 0.783 0.40 10.1 1.424
CU2+ 2.64 5.48 0.104 2.31 0.364 0.16 8.00 0.208
MG2+ 1.24 5.56 0.167 1.62 0.210 2.38 11.6 4,941 -1,
MN2+ 1.99 4.82 0.125 3.05 0.484 1.03 10.6 3.196 -
NI2+ 2.52 5.80 0.126 2.66 0.425 0.23 9.90 2.753
PB2+ 6.41 3.39 0.131 10.8 1.033 0.13 7.70 0.061
ZN2+ 2.04 5.33 0.115 3.50 0.544 0.76 9.00 1.547 =-0.
Cco2+ 2.65 5.33 0.130 2.94 0.468 0.28 9.70 2.942
CR3+ 1.71 14.5 0.107 1.66 0.220 0.41 4.00 2.265
FE3+ 2.18 13.9 0.103 1.80 0.255 0.77 2.20 2.009
c81+ 1.06 0.59 0.218 14.1 1.149 2.92 14.9 5.606 -0.
K1+ 0.93 0.72 0.232 4.38 0.641 2.92 14.5 5.796 -0.
SR2+ 1.02 3.54 0.174 7.12 0.852 2.89 13.2 5.372 -0.

.16
.99
.17
.65
02
.20
.29
.46
09
.27
.02
.34
63
73
88
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LIl+ 0.71 1.35 0.247 0.56 -.252 3.05 13.6 5.469 -0.97
NAl+ 0.88 0.98 0.211 2.14 0.330 2.71 14.2 5.603 -0.80
BA2+ 1.08 2.94 0.183 11.7 1.068 2.90 13.4 4,980 -0.76
LA3+ 1.27 8.57 0.171 7.36 0.867 2.37 8.50 3.229 -0.53
AGl1+ 4.28 0.87 0.074 6.21 0.793 0.80 12.0 -0.034 0.84

APPENDIX 8.2: SAS BACTERIAL BIOLUMINESCENCE—BINARY
METAL MIXTURE EXAMPLE

/* LA AND CE ARE THE CONCENTRATIONS OF LANTHANUM AND CERUM.

/* PAPB IS THE MEASURED BIOLUMINESCENCE AFTER 15 MINUTES OF
EXPOSURE. =*/

DATA LACE;

INPUT LA CE PAPB @@;

PAPB = 100*% ((PAPB-.372)/(1-.372)); NORMZ = 100; _

CARDS;
0

.372 0 3.125 .359 0 6.25 .385 0 12.50 .481 0 25.00 .

*/

662
684
747
761

o 3 6
3.125 0.333 3.125 3,125 .370 3.125 6.25 ,447 3.125 12.50 .533 3.125 25.00 .
6.250 0.368 6.250 3.125 .419 6.250 6.25 ,449 6.250 12.50 .568 6.250 25.00 .
12.50 0.500 12.50 3.125 .548 12,50 6.25 .569 12.50 12.50 .629 12.50 25.00
25.00 0.667 25,00 3,125 .725 25.00 6.25 .708 25.00 12,50 ,757 25,00 25.00 .821

DATA LAN; SET LACE; IF CE = 0; RUN;
PROC PROBIT LOGL0 INVERSECL LACKFIT DATA = LAN; /* PROC PROBITA
MODEL PAPB/NORMZ = LA/D = NORMAL ITPRINT;
OUTPUT OUT = PLAN P = PPROB;
RUN;
DATA LAN2; SET PLAN; PAPB
DATA CEN; SET LACE; IF LA

PAPB/100; RUN;
0; RUN;

*/

PROC PROBIT LOG10 INVERSECL LACKFIT DATA = CEN; /* PROC PROBIT B */

MODEL PAPB/NORMZ = CE/D = NORMAL ITPRINT;
OUTPUT OUT = PCEN P = PPROB;
RUN;
DATA NEW;
SET LACE;
IF LA NE 0; IF CE NE 0;
PAPB = PAPB/100;
LCE = LOGLlO(CE); LLA = LOG10 (LA);
INTERLA = -3.5687+2.4985*LLA; /* Resulting Model from PROC
PROBIT A */
PLA = PROBNORM (INTERLA) ;
INTERCE = -4.3893+3.0872*LCE; /* Resulting Model from PROC
PROBIT B */
PCE = PROBNORM (INTERCE) ;
EXPECT = PLA+PCE;
RUN;
PROC GLM DATA = NEW;
MODEL PAPB = PLA PCE PLA*PCE/CLPARM;
RUN;




